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ABSTRACT

This paper contains an existence theorem for a special class of periodic

solutions of Hamuiltonian systems and generalizes an earlier result of the same

nature due to Weinstein. --- / . .
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SIGNIFICANCE AND EXPLANATION

-Wetnstetn studied a general class of mechanical systems and established

the existence of special kinds of periodic solutions which he called brake

orbits. Roughly speaking these solutions start at the boundary of a potential

well with 0 velocity and return to the edge of the well, again with 0

velocity, a half period later. This paper contains a generalization of his

results using minimax methods from the calculus of variations as the existence

tool. -
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ON A THEOREM OF WEINSTEIN

Paul H. Rabinowitz

11. introduction

in a study of periodic solutions of Hamiltonian systems, Weinstein (11 considered

Hamiltonians of the form H(p,q) - X(p,q) + V(q). Here the potential energy V satisfies

(VI) DV= fqcjejV(q)<1} is diffeomorphic to B,,

the closed unit ball in 0,' and Vq~q) # 0 on a

while the kinetic energy satisfies .

(K)K(0,q) =0, K is even and strictly convex in p for fixed q, and

K~ap,q) - as jl+-uniformly for p 'E Sn-1 and q c D. *-.

Solutions of the corresponding Hamiltonian system:

(HS) =-Hq(p~q) , p = ~(p,q)

for which there exists a T > 0 and Q1, Q2 c ~V such that p(O) =0 =p(T) and

q(0) - Q1, q(T) -= were called brake orbits by Weinstein. Due to the evenness of K

*in p, by extending q as an even function and p as an odd function about 0 and T,

the resulting functions (P,Q) satisfy (HS) and are 2T periodic. Thus brake orbits are

* special kinds of periodic solutions of (HS).

In [I] Weinstein proved- . **

Theorem 1.1: if K, V C C2  and satisfy (VI) and (K,), then (HS) possesses a brake orbit

on H M1.
n

Theorem 1.1 generalizes an earlier result of Seifert 12] for K(p,q) ajj(q)pij

*with the matrix (ajj(q)) uniformly positive definite in V.Motivated by [1), it was

proved in 13] that:

* Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the National *

Science Foundation under Grant No. MCS-81105S6. Reproduction in whole or in part for any
purpose of the United States Government is permitted.



Theorem 1.2, If K, V e C2 , V satisfies (VI) , and K satisfies S"

(K2 ) X(Oq) -0, p • Kp(p,q) .0 if p 0 0, and K(ap,q) . - as

lje -- uniformly for p an- ' and q c

then (He) possesses a periodic solution on H11).

Theorem 1.2 drops the evenness assumption of Theorem 1.1 and replaces the convexity

condition by the milder restriction that p * Kp ) 0 if p 0 0. The price paid for this

added generality is that Theorem 1.2 asserts the existence of a periodic solution rather

than a brake orbit. A natural question to pose is whether (H) possesses a brake orbit if

in Theorem 1.2, K is also assumed to be even in p. Our main goal here is to resolve

this question and shows

Theorem 1.3: If K, V c C
2 , V satisfies (V1 ), K satisfies (K2 ) and is even in p, then 0

(He) possesses a brake orbit on H 1 (1).

The existence approach taken in (3) was to reduce the solution of (He) to that of

finding a critical point of a corresponding functional. This latter problem was solved by

a finite dimensional approximation argument together with appropriate estimates which

permitted passage to a limit. In finding a critical point of the finite dimensional
P S.j.

problem, a key role was played by an 81 symmetry which the functional possesses. In

trying to prove Theorem 1.3, a natural approach is to work in a class of functions in

which p and q have the desired form. However by doing so, the functional losses the

Ssymetry and the corresponding existence mechanism used in proving Theorem 1.2 breaks

down. Thus the min difficulty here is to find a now approach to the existence question

which overcomes the loss of symmetry. This is provided by some minimax ideas used in a

recent paper (41.

In 12, the variational problem which yields Theorem 1.3 will be formulated and the

finite dimensional approximation carried out. Aside from the now existence mechanism,

several of the steps and details here are quite close to those of (3]. Therefore we will

be sketchy at times and refer to (3] as appropriate. ,'. ;
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12. The proof of Theorem 1.3

In Theorem 2.1 of [3], a canonical transformation is made which converts the potential

well, D, given by (V1  to the closed unit b ll B observing that the trantfrmed %

Hamiltonian still satisfies (K2 ) with D replaced by B and is even in p, Theorem 1.3

reduces to proving:

Theorem 2.1: Let H - K+V where K, V C C1 and satisfy

(V1') {q ' 3n 0 0 V C 1) - B I, V 1 and Vqlq) V 0 on aB1 ,

(K2' ) K(0,q) - 0, K is even in p, p . Kp(p,q) > 0 if p f 0, and

K(op,q) - as In1 + - uniformly for p . Sn-i and q c 91.

Then (HS) possesses a brake orbit in H-I1 ().

Set M- H-I(1). Hypothesis V1 1) amd (K2 ') imply M is a compact C manifold in

2n which bounds a neighborhood of 0 in R2n. Let z - (p,q). When convenient we

write H(p,q) = H(z). & standard lemma - see e.g. (1] or [3] for H c C2  or [5] for the

C. case -states that if U is a new Hamiltonian such that H -(I) - M and R 0-. '
z

on M, any solution of

* (2.2) -H (C,n) ' Cn
q p

on H is a reparametrization of a solution of (HS) on M. Thus if there is an H for

which (2.2) has a brake orbit on PA. we easily get a brake orbit for (HS) on . A

particular such H is constructed in 131 and will also be employed here. For the

convenience of the reader, we recall its construction.

By (V1'), there are constants 6, 1 > 0 such that

Vq(q) . q > a V(q) 2>

for JqI ' [1-26,1+261 and there is a constant u - u(6) > 0 such that if V(q) > I-u

and !q! 4 1+26, then fqf > 1-A. Since K(O,q) - 0, there is a constant U1(6) such

that K(p,q) < U/2  if IPI < ul and lqj 4 1+26. Since P is compact, there is a

constant 'I > 0 such that M CBM I. Using (K2 *) it can further be assumed without loss

of generality that minCK(p,q), Ip!2 ) > 1 if I~I > N1  and hI ' 1'

o*.
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No for a, b e a and a < b, let Xla,b) aI if a Cat -0 if a bi and

(X 0 if a c ab). rour such cut-off functions will be used:

XICp) -I - XII 2- U1)

X2 (q) -x(lqh, 1-26, 1+26)

X3 (q) - xCIqli 1, 1+6)

X4 (p) -XCII M 1 ' K 1 +2)

Now the new Hamiltonian His defined via

Nlp,q) - K~p.q) + V'1p,q)

where

V~p,q) -X 1 Cp)x(2 q)Vlq) + Cl-X2 Cq))X3 (q)V~q) + p, (_X 3 (q))Iq12

* and

i(p,q) -X 4 CP)X3 tq)K(p'q) + P 2 1-X 4 Cp))1P12

* The constants p, and 02 are chosen large enough such that the following result holds:

Proposition 2.3: R possesses the following properties:

(H C2 if H in even in p, so is H,

(H3  p . 14 Cp,q) ), 0 for all p,q3 p

(144 q * 9 C,q) ;b0 with strict inequality if jql > 1-6

( 5 ) There are constants a1, a2 > 0 such that 1i) a 1z2 - 2  fo al R 2n

Proof: See Lemmas 2.14 and 2.17 of 13].

Above remarks justify proving Theorem 2.1 with H replaced by B. y making the

change of tim scale t * tT-1 A-it where T is the unknown half period, T becomes

n and (2.2) can be replaced by

12.4) p-)H , X

Thuswe seek A 0, p odd about 0 and w and q even about 0 and s uch that

-4



(p(t), qtt)) lies On H-1 0) and satisfies (2.4). A in (31, it is convenient to maskeE

one further technical modification of (2.4). For e 0, met

i (2) - 'i(x) + p

Then

(2.5) p - H (z) W 2cp1

our strategy is to find a solution of the desired type for

eq E

on W E 10). Then letting £ + 0 will produce a solution of (2.4).

Let

X= -{z - (p,q) c 1, (s 1,,,2 p is odd and q is even about 0 and w)

For z eX, set

21t

and

f21r
AWs F p~dt

We will findsa critical point of A on

S (z E X ?(Z)

and show that this provides a solution of (2.61 on H 1 (1). Technical problems make it

difficult to treat Als directly. Therefore a finite dimensional approximation argument

V will be used.

Let *,.. 102n denote the usual basis in goand set

0 -X span fe n+1 C 2n)

X span{ 9jT (sin it)ek - (cos jt)ek 1 4 k -c n, I j 4 ml

X- wspan( 1*jk -(sin jt)e k + (cos jt)e k+n 1 4 k 4 n, 1 jc 4 m}

It is easily checked that for fixed m, these subspaces of XC are mutually orthogonal in

L2 , I~n) Let XM~ X0 0Xm 0@X,. For z- ~ZO + z oEXmf a computation shows

V
e-5



(2.7)~~ ~~ Ats. + 1t1Z+1212 2glan
(-) -212

A~~z ) ( -2i (111, 1211)

whore e.g. if x E x and z E Z jk~jk ' 1:2 Ej - Let-,B S r) 13.

Loma 2.91 There is a constant am > 0 such that for each lot < %*, {z C~ X. J~) 1+0c)

(and in particular S a) is a compact C manifold in 13 avhich bounds a neighborhood

of 0.p

-. Proof; This follows from (2.5), (9 ) (U ) and a slight modification of the proof of4 5

Leoma 3.2 of [3).

If A and *, are extended to wv1,2 cs1,Rn), they are invariant under the set of

translation# ge(z) - z(t4.8) for 8 c R, i-e. A(gqz) - Mu), V9() - yTW for all

such 8 and z.* This fact allows the use of an index theory for 81I actions which plays

* ~a key role in proving Theorem 1.2. Unfortunately X is not invariant under adt

make up for this loss of symmetry, a version of a sinimax argument used in (4] will be

* employed. Towards this end, some comparison constants and sets must be introduced. Let

CL inf MEz)

:4 M

Wet 1O span (9)S 0 X

where ,,~ and let

$~ up a(s)

*ewr) SM

Looma 2.9: 0 < C, 4 0 <

Proofs B y Lemma 2.8, for r, sufficiently small, the bell B3r in .lisnid

rm % %3leisd



S.. Hence (2.7) shows

ai TI icif + Zq. 2 0 .
m ZEB r)X W

r m

Since S, is compact, B~< ~.Finally since WI n x + spanq)

ai inf A '
spanf~p1fl S

Nov let

m {h cC (Xm#X3) h satisfies (hj) -(h 3 )1

wherer.

th1) h -id if Y (Z) - f or if A(Z) j( (0, m+ I]

(h2) h Sm S,

(h3 ) h is 1-1.

Clearly r. It 0 since id E r,.

A critical value of AIS can now be defined. Let
m

(2.10) cm =inf max A(h(z))
h-Er z~w n s

Since id E rc~ 4 Bm To prove that c, is indeed a critical value of Al5 , two
rm m

preliminary results are needed. The first is a crucial intersection theorem.

Proposition 2.11: If h r., h(W. n m n~ x+

Proof: Let h E r. Note that A~ 0 on X' SX and therefore by (h1) h Id on

this set. By ()

2
(2.12) 1~z) )p a Wiz - a3 2 4

L

so T(z) as z *= Hence by (2.12), there is an Rm> 1 Such that for z outside

the L 2 ball B. in X,, ip(z) > 1. Therefore by (h1 ) h id on this set. Let

0
Qm = B (X S (rip I r > 01 0 I)

we will Find zm Qm P~ such that

-7-



? .'m q

thereby establishing the Proposition. Let PO, P+, P3  denote respectively the (L
2
)

orthogonal projectors of X, onto X
0 , 

X m
+ 

X_ . Satisfying (2.13) for zm -. Sm  is -

equivalent to

WI '(z)-
)2.1r

(ii) (P0 + P h~z) " 0.

if z c Qm' s = y+ro a (y,r) where y c X
0 

Xm . Let

*(y,r) 5 ((P0 + P;)h(y
+r

v), T(y+rp)) %

Identifying W3  with I3 (n+1)z x R and Qm with a subset thereof,

_ (n+l)m R. Consider the Brouwer degree of 0 with respect to the bounded open

set Q, and the point (0,I). This degree will be denoted by d(1,Q3 ,(O,1)). It is

defined provided that 0 0 (0,1) on Q,. But if (y,r) c 3Qm, either r = 0 in which

case A(y) 0 0, h(y) = y, and f(y,O) - (y,'f(y)) ( (0,1), or ny+r9H 2 - 1m so that

L
h(y+rip) - y+rcp by the choice of Re and 0(yr) -(y,'y+rq)) with IP(y+r.) > 1. Thus

d(4,Q,,O) is defined.

We claim I is honotopic to the identity map on aQm, the hosotopy avoiding (0,I).

Then

(2.15) d(,Q(O,)) -d(idQm(0,1)) -I

since Re > 1 and therefore (0,1) E Q,. To verify the claim, observe that the argument

showing that d(O,Q,,(0,1)) in defined implies f(y,r) - (y,1'(y+rp)) for (y,r) E aQm . .-

Thus we only need construct an appropriate homotopy of T(y+rT) to r on aQm. For

6 c [0,11, let

*
9
(y,r) = (y, e Ty+rv) + (1-e)r)

If *e(y,r) - (0,1) on 3Q, then y - 0. Therefore r - 0 or r 
= 
Rm . But if r = 0, - .

$0(0,0) - (0,0) 0 (0,1) while if r - Rm, Oe(0,Rm) - (0,8(R 5 v) + (1-e)Rm) 0 (0,1) since

Y(R 4p), Re > 1. Thus (2.15) holds and by the properties of Brouwer degree, there exists

a Z, E Q, satisfying (2.14). Finally since h(zM) : S., (hl) - (h2 ) imply z, oE Sm and

the proposition is proved.

, .. .. , . . , . . . . . . , .... . .. . . .I



corollary 2.16: c, > m

Proof: if h c r3, by Proposition 2.11,

t2.17) max A(h(Z)) p intf AM Ew a
ZtEW r)S WEX

Since (2.17) holds for all h c r5, Cm " m

N4ext a version of a standard Deformation Theorem in required.

Proposition 2.18: If cm is not a critical value of Alsm, there is an r > 0 and

n C([O,1] X Xrn1Xm) such that

I . vn(s,.) is a homeomorphism of Y. onto Xmfor each 9 c [0,1],

20. n(l,Z) =Z if AtZ) C[0,83 +11 or if Y(z)-1)i .
2

30. 11(s,-) S3 -*S 3  for each s E 10,1],

40. Letting Aa {x c Sm AWx 4 )

n(I,Acm+r) C Ac,rr

Proof: This result is essentially in the literture - see e.g. [6 -81 so we will be

rather sketchy. Suppose first that H 2
*Then n is determined as the solution of an

ordinary differential equation in X.of the form:

=-tw(r) !A() - n''n

(2.19) d

nI(0,z) - z

where

)dn) =A (ri) '''()14~-

*In (2.19), w is a locally Lipschitz continuous function satisfying 0 4 W(.) 4 1, w(-) 0

outside of a small neighborhood of S m W(-) =0 if A(z) 10, t0 +1], and w is such

that the right hand side of (2.19) is 41 in norm. In the construction of w, use is

made of the tact that cm 6 [am,B3] with am > 0 as has been verified above. Now since

V' 0 0 near S, (via the proof of Lemmna 3.3 of [31), the right hand side of (2.19) is

* well defined and locally Lipschitz continuous. Therefore 10 -30 of Proposition 2.18

* -9-



* follow immediately from our above remarks. Finally 40 is a consequence of a standard

argument (7 - a].

if Bi is merely c 1 , V(ri) - A'()-(lY(n) must be replaced by a corresponding

- pseudo-gradient vector field for V on a neighborhood of Be which is tangential to

S Then the result follows essentially as in the 2cs.B*7 8]

* ~~~These preliminaries now yield cs. Se( ]

Proposition 2.20: c. is a critical value of . -. -

- ~ Proof: if not, let r and n be as given by Proposition 2.18. Choose h E r such that

t2.21) max A(htz)) 4 c + r

z4sn w

* By (2.21) and 30 -40 of Proposition 2.18,

*(2.22) max A(7n(1,h(z))) c -c r
Mes ()l W

a M

* But 10 -30 of Proposition 2.18 imply rn(1,h) c r,. Thus (2.22) contradicts (2.10).

Remark 2.23: If 2m is a critical point of Al.8  corresponding to c, then = Xiz M)

is positive. Indeed since

(2.24) (Al(z 3 ) X ) V(z,))rc 0

for all C E Xm, choosing -(pmJJ) where 23 - (pm,qm) shows

*(2.25) cmt 2 w P. _i.dt. t 2 w P.H (z,)dt

Since cm > 0, (1.5) and (2.25) imply Xm > 0.

The idea now is to let m and show that VX,,z,) converge along a subsequence

to (X,z) satisfying (2.6). Some estimates are required to carry this out.

Proposition 2.26: There are constants 0 < c c C such that

(2.27) c 4c 4 Cc

- for all M UE

Assuming Proposition 2.26 for now, the proof of Loima 3.22 of 131 - slightly modified

since cm, A m 0 here while cm, A. < 0 in [3) - shows there are constants

-1 0-. .-



0 < < y < a nd independent of m such that

(2.28) X < X 21

for all m e W. Moreover Lema 3.32 of (3) then proves the sequence (z ) is bounded in

WI 
2
(S

1
,R2n). Hence, along a subsequence, A. converges to X > 0 and zm converges

weakly in WD 2(S1,R 2 n) and strongly in C(S1,R 2 n) to z C W1,2(S,n) satisfying

(2.29) (A'IZ) - A j'(s)) - 0

for all C c X. Setting C - (u,v), equation (2.29) is equivalent to."

2 ) (ju) - di tz) • u) + (H (z) • v)Ijdt(2.30) • = + * u - ) +[ p( ,., () *u]d

(2 .30)e

for all Cu,v) c X. Since p and q are continuous, (Hp(p,q), Hq(pq)) Y, the

closure of X in L2 (S ,32 n). It then follows from (2.30) that z - (p,q) satisfies

(2.6) and z E CI(S ,j
2n). Since (2.6) is a Hamiltonian system, H (s) constant. Hence

z e 8 implies z lies on H-1 (1).

Proof of Proposition 2.26: By a remark following (2.10) and Corollary 2.16, 0L ( cm 4 Bm ".

If a, 0 as m - along some subsequence, there is a corresponding sequence (w.) such

that w C + r) Sm and A(wm) + 0. Therefore by (2.7), w. + 0 in w1 '2 1S1 ,R
2n ) and a

fortiori in L2(SI,Pn). Since H z) grows at a quadratic rate for large z, 'V is

continuous on L2 (Slt 2 n) and

'FW +__f 2,T i (0)dt . 0 *-

-..

But T(w.) - I for all m so cim must be bounded away from 0 and there is a positive -..-

c as desired.

Next to show that {B,) is bounded away from infinity, recall that

8ex sup A(s)

a m

Let W S x 0 espan[T} • X. Since We C W and Sm C So

a sup A(z) - c
z'W ( S'

Thus it suffices to prove that c < =. But if a c W, z - z
0 + p(z)o + z and

0.

%A

P* %

V,* %

. ..*.--... .:.:..- :.-.:.- . ,..- .. w..v ..- :. .- . -. -' ' .'-
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2 2(2.27) A(S) P (z)A(V) + A(s) ( w P z)

By ( ) if C S, ;0 L

2w0a 2 )dt 2  2 .2

1 2
* I P(z)

2 
- a2

* or

(2.28) OW 2 2 1+a2
a1

Combining (2.27) and (2.28) yields
1+a2 ,

- 2

and the proof is complete.

Remark 2.29: As examination of the above argument shows that c, c can be chosen

independently of c. Therefore c 4 c. . A(ze ) - c where z is a solution of (2.6)

obtained via the finite dimm-ensional approximation argument...

Completion of the proof of Theorem 2.1: We must show (2.4) has a solution of the desired

type. Such solutions (XZ,) have already been obtained for (2.6). It suffices to prove

that {X } in bounded away from 0 and - in 2 and {z } is bounded in W1 '2(,sl,2n)

for then we can easily pass to a limit to find a solution of (2.4) on HI(1). But the

c independent bounds for c. of Remark 2.29 and Lemina 3.35 of (3] yield the necessary

bounds for (A,), {Z,-

Remark 2.30s Gluck and Ziller [9] have proved there are brake orbits for (HS) under more

general conditions on V than (V1). (See also Hayashi [10] and Benci (11] for a special

case.) We suspect that Theorem 1.3 holds in their generality with respect to V. The

* difficulty in proving such a result via the approach given here is to find bounds for the

periods of approximate solutions.

Ik .. * - ..

-12-
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Remark 2.31: The existence of a special kind of brake orbit which passes through the

origin as well as multiplicity results for (HeS) for a subclass of Hamiltonians of the type

considered here was proved by van Groesen (12].

• . •j
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